Martijn van Mensvoort -  Hand Research
 

MAY 11, 2011 (UPDATED: JANUARY 17, 2013 - 9 more countries featured!)

The Fingerprints-World-Map!


The global distribution of whorls, (radial) loops & arches: which is the most common fingerprint type? And what is the most common fingerprint-distribution seen in the 10 fingers? And... could it be that 'whorls' became less common in newborns around the world during the past few decades?


In 1953 David C. Rife (Institute of Genetics and Department of Zoology, Ohio State University) presented a fingerprints world map displaying the distribution of the so-called 'pattern index' around the world. What can we learn from this world map today? Is it still valid?

Fingerprints: whorl type. Fingerprints: ulnar loop type. Fingerprints: radial loop type. Fingerprints: arch type.

The fingerprints world map: whorls, loops & arches.

The fingerprint world map displays the distrubution of the 'pattern index' (pattern intensity) - which was defined by Harold Cummins (Cummins and Midlo, 1943) as follows:

"PATTERN INTENSITY. Arches, loops and whorls form a sequence of increasing pattern complexity. This sequence has as its parallel an increase in the number of triradii - the plain arch having none, the loop one, and the whorl two. The number of triradii accordingly is available for a simple quantitative statement of pattern intensity. The value of pattern intensity may be stated either as the number of triradii per indiviual, or as the average number of triradii per finger."







The highest 'pattern index' in the world is found in populations located in Australia + the eskimos in Northern America - in these populations are whorls most common, resulting in an average 'pattern index' above 15.5 (while in most other populations loops are most common). And the lowest 'pattern index' in the world is found in populations located in central africa, such as the Bushmen & Pygmies - in these population are arches relatively common and likewise commons as whorls, resulting in an average 'pattern index' below 10 (while in other populations whorls are usually much more common than arches).

In the continuation of the article the following questions are answered:

What are the most important fingerprint types?
Which is the most common fingerprint type in the world?
What is the most common fingerprint distribution in the 10 fingers?


Elvis Presley



Elvis Presley's fingerprints





What are the most important fingerprint types?

The most detailed system for fingerprint classification was presented in 1985 by the F.B.I.'s "The Science of Fingerprint". In the F.B.I. system 8 types of fingerprints are described: 2 arch variants, 2 loop variants, and 4 whorl variants - see the picture below.


However, since 1985 researchers have continued to use various other approaches to classify the most common fingerprint variants. Usually the 4 most common variants of these 8 types (arches, radial loops, ulnar loops & whorls) are discriminated. And because these 4 most common variants are easy to discriminate from eachother, we will focuss on the prevalence of only these variants around the world.

F.B.I. fingerprint classification: 8 types.





Which is the most common fingerprint type in the world?

The table below shows fingerprint distribution results for 21 countries, displaying that in 19 of the 21 populations the LOOPS are the most common fingerprint pattern type. Only in the populations from China, India & New Guinea are WHORLS more common than LOOPS.


The 'pattern index' for Brazil, France, India, Israel, Kenya, The Netherlands, Nigeria, Tanzania & Yemen is exactly within the expected range (according the 1953 map), and for China, Costa Rica, England, Iran, New Guinea, Thailand, Venezuela & Vietnam it is (very) close to the expected range. For Japan & Korea the values are clearly below (though not far away) the expected range; only the 'pattern index' for the US is significantly lower and not meeting the expectations according the 1953 map.

And as expected:

- the highest 'pattern index' is found in New Guinea;
- all reported African countries (Nigeria, Kenya & Tanzania) present results that clearly show a low 'pattern index'.

Only for the USA is the 'pattern index' clearly much lower than expected; and for Argentina is the 'pattern index' clearly higher than expected.

NOTICE: Interestingly, only the 'pattern index' of the England population is (slightly) higher than the expected range; but in 8 countries the 'pattern index' is lower than expected. This could indicate... that during the past decades the percentage of 'whorls' have become slightly smaller in many populations around the world - because whorls have the highest weight in the 'pattern index'! However, there is no clear evidence that this tendency is more obvious for the more recent samples (4 out of 9 samples in the 21 century still follow the guidelines presented in the map, but none of the other 5 samples is higher than the expected range: all 5 samples are lower).

When this tendency is confirmed in the future this could make sense in the perspective of Darwin's evolution theory - because WHORLS are already known to be less common in humans than in primates. Time will tell!



CONCLUSION:

The reported results around the world show a very high correlation with the 1953 Fingerprint World Map! The percentages indicate that LOOPS are seen in a small majority (53%) of all fingers around the world; this tendency is confirmed in 18 out of the 21 populations. WHORLS are only sometimes more common than loops; only 2 out of 21 populations have more WHORLS than LOOPS), but for WHORLS the percentage rarely is higher than 50% (for New Guinea the WHORL percentage is 55%).

Finally, it is remarkable that almost half of the populations show (clearly) lower percentages than expected according the 1953 Fingerprint World Map. Only one of the older samples (England: samples from 1943, 1964 & 1983) shows percentage above the expected range according the map.





NOTICE: Countries in the table below are ranked by WHORL percentage; 'double loop whorls', 'plain whorls', 'central pocket loop whorls' and 'accidental whorls' are grouped as WHORLS; and 'plain arches' & 'tented arches' grouped as ARCHES.

_________ Fingerprints: whorl type. Fingerprints: ulnar loop type. Fingerprints: radial loop type. Fingerprints: arch type.

COUNTRY
WHORLS
ULNAR
LOOPS
RADIAL
LOOPS
ARCHES
PATTERN
INDEX
(2 triradii)

(1 triradius R-side)

(1 triradius U-side)

(No triradius)



New Guinea New Guinea (N=166) 1
55.0 %
43.4 %
1.1 %
0.5 %
15.45

China China (N=379) 2
46.9 %
44.7 %
3.0 %
5.4 %
14.15
Vietnam Vietnam (N=135) 3
46.0 %
46.9 %
1.7 %
5.4 %
14.06
Argentina Argentina (N=60) 4
45.8 %
50.2 %
2.0 %
2.0 %
14.38
Japan Japan (N=673) 5
46.2 %
48.6 %
3.3 %
1.9 %
14.43
South-Korea Korea (N=3.216) 6
42.9 %
50.4 %
3.8 %
2.9 %
14.00
Thailand Thailand (N=68) 7
42.4 %
51.8 %
2.1 %
3.7 %
13.87

India India (N=455) 8-10
41.8 %
48.8 %
3.4 %
6.0 %
13.58

Israel Israel (N=253) 11
40.8 %
52.7 %
3.3 %
3.2 %
13.76
Yemen Yemen (N=240) 12
40.0 %
53.0 %
2.3 %
4.7 %
13.53
Iran Iran (N=200) 13
38.5 %
52.8 %
4.1 %
4.6 %
13.39

Nigeria Nigeria (N=510) 14
31.7 %
51.0 %
2.4 %
14.9 %
11.68
Brazil Brazil (N=300) 15
30.8 %
60.0 %
4.3 %
4.9 %
12.59
USA US (N=728) 16,17
27.2 %
61.3 %
4.6 %
6.9 %
12.03
France France (N=76) 18
26.6 %
57.8 %
? %
? %
11.10 + ?
Netherlands Netherlands (N=2.500) 19
26.0 %
61.0 %
5.1 %
7.9 %
11.81
England England (N=6.300) 20-22
25.6 %
63.9 %
5.6 %
4.9 %
12.07
Venezuela Venezuela (N=119) 23
24.1 %
57.2 %
5.1 %
13.6 %
11.05
Tanzania Costa Rica (N=743) 24
21.7 %
63.2 %
3.5 %
11.6 %
11.01

Kenia Kenya (N=304) 25
18.2 %
71.3 %
6.5 %
4.0 %
11.42
Tanzania Tanzania (N=300) 25
18.3 %
70.3 %
7.1 %
4.3 %
11.40

TOTAL WORLD POPULATION ESTIMATES:
39.4 %*
50.1 %*
3.4 %*
7.1 %*
13.23*

* Percentages are weighted according world population statistics in the year 2000.

NOTICE: Six out the 10 most populous countries in the world today are represented. For half of those countries (China, US & Japan) the statistics indicate that the number of WHORLS has dropped in those countries during the past decade; only for India, Brazil & Nigeria the statistics are within the expected range according the 1953 Fingerprint World Map.


Sources:

1)
Dermatoglyphics of the Fore and Anga populations of the Eastern Highlands of New Guinea (C.C. Plato & D.C. Gajdusek, 1972);
2) Dermatoglyphic changes during the population admixture between Kam and Han Chinese (Xu Cheng et al., 2009);
3) Dermatoglyph groups Kinh Vietnamese to Mon-Khmer (Hui Li et al., 2006);
4) Dermatoglyphics: An International Perspective (J. Mavalwala, 1978);
5) Dermatoglyphs of Klinefelter's syndrome (Hiroshi Shiono, 1977);
6) Dermatoglyphic Characteristics of Patients with Rheumatoid Arthritis (Sung-Bae Hwang et al., 2005);
7) Dermatoglyphic Traits in Thai Schizophrenia Patients: A Matching Case-Control Study (Suwanna Arunpongpaisal et al., 2011);
8) Dermatoglyphics: comparison between Negritos Orang Asliand the Malays, Chinese and Indian (E. Ismail et al., 2009);
9) Finger Dermatoglyphic variations in Rengma Nagas of Nagaland India (S.D. Banik et al., 2009);
10) Study of the Fingertip Pattern as a Tool for the Identification of the Dermatoglyphic Trait in Bronchial Asthma (S.V. Pakhale et al., 2012);
11) Dermatoglyphic sexual dimorphism in Middle Eastern Jews (S. Micle & E. Kobyliansky, 1987);
12) Dermatoglyphic sexual dimorphism in Yemenite Jews (S. Micle & E. Kobyliansky, 1987);
13) A study of Iranaian Muslims - Part 1: Finger patterns and ridge-counts (M. Mehdipour & D.D. Farhud, 1978);
14) A study on the dermatoglyphic patterns of Okrika and Ikwerre ethnic groups of Nigeria (E.A. Osunwoke et al., 2008);
15) Dermatoglyphic in a large normal sample of Caucasoids from Southern Brazil (E. de F. Penhalber et al., 1994);
16) The use of dermal configurations in the diagnosis of mongolism (F. Walker, 1958);
17) Dermatoglyphics in Medical Disorders (B. Schaumann & M. Alter, 1976);
18) Dermatoglyphic patterns in dementia of the Alzheimer type: a case-control study (C. Berr et al., 1992);
19) Vingerlijsten - Het Lot in Eigen Hand, in: Natuur & Techniek (4) (A.G. de Wilde, 1986);
20) Finger prints, Palms and Soles (H. Cummins & C. Midlo, 1943);
21) Fingerprint-patterns in mongolism (S. Holt, 1964);
22) Quantitative Dermatoglyphics (D.Z. Loesch, 1983);
23) The Genetic Structure of a Tribal Population, the Yanomama Indians. VIII. Dermatoglyphic Differences among Villagess (F. Rothhammer et al., 1973);
24) Dermatoglyphic traits of six Chibcha-speaking Amerindians of Costa Rica, and an assessment of the genetic affinities among populations (Maia Segura - WW Ramiro Barrantes, 2009);
25) Palmar and digital dermatoglyphic traits of Kenyan and Tanzanian subjects (P.S. Igbigbi & B.C. Msamati, 2005);








What is the most common fingerprint distribution in the 10 fingers?

The distribution of fingerprint types varies significantly among individual fingers. In order to identify the most typical distribution in among the 10 fingers, we can simply take a look at the most common fingerprint pattern type in each of the 21 populations.


The table below presents an overview of the most common fingerprint types on each of the 10 fingers.





NOTICE: The table below displays the most common fingerprint types for each single finger among the 21 international populations.

COUNTRY
LEFT/RIGHT
THUMB
INDEX
FINGER
MIDDLE
FINGER
RING
FINGER
PINKY






New Guinea New Guinea (N=166) 1
right
left
W
W
W
W
W
W
W
W
UL
UL

China China (N=379) 2
right
left
W
W
UL
W
UL
UL
W
W
UL
UL
Vietnam Vietnam (N=135) 3
right
left
W
UL
W
UL
UL
UL
W
W
UL
UL
Argentina Argentina (N=60) 4
right
left
W
W
W
UL
UL
UL
W
W
UL
UL
Japan Japan (N=673) 5
right
left
W(?)
W(?)
W(??)
UL(??)
UL(?)
UL(?)
W(?)
W(?)
UL(?)
UL(?)
South-Korea Korea (N=3.216) 6
right
left
W
W
W
UL
UL
UL
W
W
UL
UL
Thailand Thailand (N=68) 7
right
left
W
W
W
W
UL
UL
W
W
UL
UL

India India (N=455) 8-10
right
left
W
W
W
W
UL
UL
W
W
UL
UL

Israel Israel (N=253) 11
right
left
W
W
W
W
UL
UL
W
W
UL
UL
Yemen Yemen (N=240) 12
right
left
UL
UL
W
W
UL
UL
W
W
UL
UL
Iran Iran (N=200) 13
right
left
W
W
W
W
UL
UL
W
W
UL
UL

Nigeria Nigeria (N=510) 14
right
left
W
W
UL
W
UL
UL
UL
UL
UL
UL
Brazil Brazil (N=300) 15
right
left
UL
UL
W
W
UL
UL
UL
UL
UL
UL
USA US (N=728) 16,17
right
left
UL
UL
W
UL
UL
UL
UL
UL
UL
UL
France France (N=76) 18
right
left
UL
UL
UL
UL
UL
UL
UL
UL
UL
UL
Netherlands Netherlands (N=2.500) 19
right
left
UL
UL
UL
UL
UL
UL
UL
UL
UL
UL
England England (N=6.300) 20-22
right
left
UL
UL
UL
UL
UL
UL
UL
UL
UL
UL
Venezuela Venezuela (N=119) 23
right
left
UL
UL
UL
UL
UL
UL
UL
UL
UL
UL
Costa Rica Costa Rica (N=743) 24
right
left
UL
UL
UL
UL
UL
UL
UL
UL
UL
UL

Kenya Kenya (N=304) 25
right
left
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
Tanzania Tanzania (N=693) 25
right
left
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)
UL(?)

THE UNIVERSAL DISTRIBUTION FOR THE 10 FINGERS:
right
left
W*
W*
W*
W*
UL*
UL*
W*
W*
UL*
UL*

* Resulting from weights according world population statistics in the year 2000.




The results in the table show that in all populations in each of the 10 fingers the ulnar loop or the whorl is always the most common fingerprint pattern type.

In both the right hand and the left hand the ulnar loop is found in a large majority of all 20 populations on the pinky finger. A likewise situation is seen in the middle finger, though in the population of New Guinea the whorl is more common on the middle finger of both hands.

The whorl is in far most populations the most dominant pattern on the ring finger, the thumb & and the index finger.


This implicates that the most common similarity between the 20 populations is a high prevalance of the so-called 'universal distribution' for the 10 fingers:

Right hand (thumb to pinky):__ whorl - whorl - ulnar loop - whorl - ulnar loop;
Left hand (thumb to pinky):___ whorl - whorl - ulnar loop - whorl - ulnar loop.

The populations from India, Israel, Iran & Korea display this 'universal distribution'. And the populations from Argentina & China display a related distribution - featured with only one differentiation on a single finger aspect. Differentiations on two finger aspects are seen in the populations from New Guinea, Vietnam & Yemen. Differentiations on three finger aspects are seen the popuation from Nigeria.

Finally, it is rather remarkable to notice that the 'white' populations show by far the largest variation compared to the 'universal distribution':
- the population from the USA displays differentations on five aspects;
- and the population from UK displays differentiations on six aspects.

This indicates that any fingerprint combination in an individual can only be described as 'significant' when it shows at least seven differences with the 'universal distribution'. If there are six or less differences, the combination of the 10 fingerprints can very likely be described as likely falling within the 'common' variations.

Fingerprints: whorl type. Fingerprints: ulnar loop type. Fingerprints: radial loop type. Fingerprints: arch type.

Finally, one should also consider the normal distribution of the four pattern types: radial loops are typically seen on the index finger only, while arches are typically seen on the index finger and/or middle finger only + in neighbour-combinations with one of these two fingers.

Read more about: the role of
fingerprints & dermatoglyphics in Multi-Perspective Palm Reading.


Fingerprints: the universal distribution on the 10 fingers.



FINGERPRINT | FINGERPRINTS

Related sources:
Fingerprint distributions & hand diagnostics!
The function of the hand: dermatoglyphics, fingerprints, creases, lines & nails
The 4th IBMBS Conference takes place in October 2009!
How fingerprinting works
Dermatoglyphics: a review
Fingerprints & Psychological Patterns of Personality
Palmistry: a science in process
The fingerprints world map: the distribution of whorls, loops & arches!


HANDS IN THE NEWS


 
 
 

TIPS - Discover more: Modern Hand Reading Forum | Multi-Perspective Palm Reading | Hand Reflexology Charts

COPYRIGHT 2002-2013: Martijn van Mensvoort (Dutch version: Hand Analyse)